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Abstract

Andrei Toom, who died in September 2022, contributed some of the
most fundamental results on probabilistic cellular automata. We want to
acquaint the reader with these and will also try to give the reader a look
at the environment in which they were born. Toom was an original and
strong personality, and other aspects of his life (education, literature)
will also deserve mention.

Andrei Toom, a key developer of the theory of probabilistic cellular au-
tomata, died in September 2022. In this space I will describe his most impor-
tant results, adding some evaluation of their significance. In a closing section
I will also refer to Andrei’s life and the environment in which he acted.

1 Probabilistic cellular automata

Cellular automata are an attractive mathematical structure: simple to define,
they give rise to highly complex behavior. They can model—in a qualitative
way—a number of phenomena in physics, biology, society. And they offer
a number of natural, and at the same time very challenging, mathematical
problems. One way to think of them is as of a discrete generalization of
partial differential equations.

A cellular automaton has a finite or countable number of units, its cells,
typically arranged on a finite-dimensional lattice, its set of sites Λ; they in-
teract with their neighbors in a way that is uniform in space and time. Here
Λ will always be either the set Zd of points in the d-dimensional space with
integer coordinates, or a finite version of it, Zd

m, where Zm is the set of re-
mainders modulo m. Each cell has some state, belonging to some finite set S.
A configuration is a function ξ : Λ → S, that is ξ(x) is the state of the cell
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sitting at site x. We will also use the following notation: if L = (x1, . . . , xk )
is a list of sites then

ξ(L) = (ξ(x1), . . . , ξ(xk)). (1)

The system develops in discrete time: our space-time is given by Λ × Z+. A
history is a function η : Λ× Z+ → S, so η(x, t) is the state of cell x at time t.

The interaction between cells is local: the state of a cell at site x at time
t+1 is only influenced by the state of its neighbors x+ u1, . . . , x+un at time
t. The list u1, . . . , un is the same for all x. In the case of finite space Λ = Zd

m

the addition is taken modulo m (this is called periodic boundary conditions).
Example for d = 2: the list

(0, 0), (−1, 0), (1, 0), (0,−1), (0, 1) (2)

is called the von Neumann neighborhood. The most important part of the
definition of cellular automata is the kind of constraints made on the history
η(x, t). We obtain a deterministic cellular automaton by specifying a transi-
tion function g : Sn → S and requiring that for each time t, each cell get its
state at time t+ 1 from the state of its neighbors at time t as follows:

η(x, t+ 1) = g(η(x+ u1, t), . . . , η(x+ un, t)). (3)

For example, for d = 1 and the neighborhood {−1, 0, 1} the requirement would
be

η(x, t+ 1) = g(η(x− 1, t), η(x, t), η(x+ 1, t)).

Another way to express this is to say that there is a function, or “operator”,
D : SΛ → SΛ taking configurations to configurations such that

(Dξ)(x) = g(ξ(x+ u1), . . . , ξ(x+ un)).

A history satisfying the requirement (3) will be called a trajectory of the
cellular automaton having the transition function g. The initial configuration
η(·, 0) and the transition D completely determines the trajectory: η(·, t) =
Dtη(·, 0).

Apparently the first deterministic cellular automata were introduced by
von Neumann and Ulam in the 1940’s with the intention of modelling biologi-
cal systems. Von Neumann’s explorations were cut short by his death, though
their record is available in [60]. As for the mathematical theory, soon after
their introduction it has been understood that even 1-dimensional cellular au-
tomata can simulate Turing machines (just choose the appropriate transition
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function), therefore it is hard to find interesting mathematical questions about
them that are not undecidable. (We will see that Andrei Toom succeeded in
this.)

It is natural to generalize cellular automata by allowing the cells to make
their transition in a stochastic way. Then η(x, t) becomes a random process.
The role of the transition function g is taken over by a set of transition prob-
abilities θ : Sn+1 → [0, 1]. The value θ(s | r1, . . . , rn) shows the probability of
transitioning into state s at time t+ 1 provided the neighbors at time t have
states r1, . . . , rn at time t. Of course∑

s∈S
θ(s | r1, . . . , rn) = 1.

Example 1.1 For d = 1, S = {0, 1}, the neighborhood {−1, 0, 1} and some
ε ∈ [0, 1] let the transition be the following: first take the majority of the states
of the three neighbors, then with probability ε change it to the opposite value.
Thus

θ(maj(a, b, c) | a, b, c) = 1− ε.

⌟

Call a cylinder set in the set of histories any set of the form

{η : η(x1, t1) = s1, . . . , η(xk, tk) = sk}.

The set of histories will be equipped with the discrete topology: the cylinder
sets form a basis of its open sets. The same works for the set of configurations.
A random history is defined by a probability measure on the Borel sets of the
histories. If f is a measurable function over the probability space and µ is a
proability measure then we will denote by µf the expected value (integral) of
f by µ.

It is assumed that the cells make their choices independently, so the prob-
ability distribution Prob{·} satisfies for any t, x1, . . . , xk:

Prob{η(x1, t+ 1) = s1, . . . , η(xk, t+ 1) = sk | η(·, t′), t′ ≤ t}
= θ(s1 | η(U(x1), t)) · · · · · θ(sk | η(U(xk), t)).

(4)

Just like given a transition function of a deterministic cellular automaton
and an initial configuration η(·, 0) the trajectory is completely defined, given
the transition probabilities and a probability distribution over the initial con-
figurations η(·, 0), the random process η is completely defined. (The initial
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probability distribution can, in particular, be the special one, δξ, concentrated
on a single configuration ξ.) In fact, the transition probabilities θ(· | ·) define
a linear operator P on the set of measurable functions over SΛ as follows:

(Pf)(η(·, t)) = E{f(η(·, t+ 1)) | η(·, t)}

where E{· | ·} is the conditional expected value. Functions f of particular
interest are

ex,a(ξ) = δξ(x),a =

{
1 if ξ(x) = a

0 otherwise.
(5)

This also defines a linear operator µ 7→ Pµ on the space of probability mea-
sures over SΛ via (Pµ)f = µ(Pf). If we denote the probability distribution of
η(·, t) by µt, then µt+1 = Pµt. Clearly, the values Pδξ over all configurations
ξ define P completely: without confusion we can write Pξ = Pδξ. The transi-
tion operator D of a deterministic cellular automaton can be seen as a special
case via the following extension of its domain: Dδξ = δDξ. The distribution µ
will be called stationary (or also, invariant) if Pµ = µ. It is well-known and
not difficult to prove that there is always at least one stationary distribution.

The study of probabilistic cellular automata was started in the early 1960’s
by a group of mathematicians around Ilya Piatetsky-Shapiro. Toom recalls
the circumstances vividly in [53]. The atmosphere of political thaw and wave
of optimism, lasting just a few years, spurned new scientific initiatives, partly
by opening areas that were off-limits before, being considered bourgeois sci-
ence (like theoretical biology and “cybernetics”). In the department headed
by I. I. Piatetski-Shapiro in I. M. Gelfand’s laboratory of applied mathematics
at the Moscow State University, a diverse and dynamic group of young scien-
tists explored a variety of potential applications. For the few mathematicians
among then (a minority), it took a while to focus on the kind of nontrivial
questions where an answer with mathematical rigor could be expected. This
is how the model of probabilistic cellular automata emerged; soon it became
clear that even the simplest examples and the simplest natural questions about
them posed worthy challenges.

In Moscow, two other groups lead by prominent mathematicians worked on
related problems of theoretical statistical mechanics: those of Roland L. Do-
brushin and Yakov G. Sinai. There was a fertile interaction between these
three groups. A closely related model of cellular automata, where time is
continuous, has been mostly developed in the United States under the name
of interacting particle systems, and has the good fortune of a monograph [21]
by Thomas Liggett to refer to. The development of the discrete-time and
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continuous-time models was largely independent of each other, probably some-
what due to the limited possibilities of contact between their researchers. An-
drei Toom participated in the writing of at least two useful introductions: [55]
and [43].

One of those simplest natural questions is whether the operator P defining
some probabilistic cellular automaton has more than one stationary distribu-
tion. The transition (4) defines a Markov process. If the space Λ is finite
then this is a finite-state Markov chain; the theory of these is well-developed.
The operator P can then be represented by a matrix. The chain has a single
stationary distribution if and only if every state is reachable from every other
state by a sequence of positive-probability transitions. A related question is
whether for every initial distribution µ the sequence P tµ converges to this
stationary distribution. The answer is yes if and only if an additional condi-
tion is satisfied: that there is a t such that every element of the matrix P t is
positive (this excludes the possibility of “cycling”). Such a Markov chain is
called ergodic. An informal way to express the meaning of ergodicity is to say
that an ergodic process eventually forgets everything about its initial state.

The question is therefore new only for infinite cellular automata—here the
state space is uncountable. Ergodicity is defined for this Markov process in
the same way: requiring that for every initial distribution µ the sequence P tµ
converge to one and the same (stationary) distribution. It is natural to choose
the sense of convergence here to be that of weak convergence, which in this
case says that (P tµ)(C) converges for every cylinder set C. The problem of
giving sufficient criteria of ergodicity has been given attention at the very
beginning, also because it is related to the question of phase transition in the
models of equilibrium statistical mechanics developed by Dobrushin, Lanford
and Ruelle. One of these sufficient conditions can be found in [56].

The first interesting question posed to the group was to find an example
of a non-trivial non-ergodic probabilistic cellular automaton. Cellular au-
tomata are universal computing devices, therefore it is hard to ask non-trivial
questions about them—like this one—that are decidable. Kurdyumov showed
in [19] (strengthened in [48]) that the ergodicity question for probabilistic
cellular automata is undecidable, even if only 0, 1, 1/2 are allowed as local
transition probabilities. Toom in [49] proved a similar result for continuous-
time systems.

When speaking about non-ergodicity we generally expect that there are at
least two stationary distributions. (I am not aware of any non-trivial example
of an infinite probabilistic cellular automaton P with only one stationary
distribution but where P tµ does not always converge to it. “Non-trivial” is,
of course, important here, as we could just combine infinitely many identical
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copies of a finite example.)

2 The Stavskaya model

A candidate example [28] emerged from computer experiments carried out by
O. N. Stavskaya. It is one-dimensional, with state space S = {0, 1}. I will
describe it by switching the states from 0, 1 to 1, 0, to make it analogous to the
interacting particle system called the contact process. There is a parameter
ε ∈ [0, 1]. The neighborhood is {0, 1}, and transition probabilities are

θ(1 | a, b) =

{
0 if a+ b = 0,

1− ε otherwise.
(6)

In words: call a site healthy if its state is 0, and sick otherwise. A sick site will
be healed “spontaneously” with probability ε. A healthy site can only become
infected by a sick right neighbor; this will happen with probability 1− ε: one
can say that infection happens with certainty but then spontaneous healing is
applied to the site immediately. Let 0 be the configuration consisting of all 0’s
and 1 the one consisting of all 1’s. The distribution δ0 is trivially stationary.
It should be clear that when ε is close to 1 then P tµ converges to δ0 for every
µ. Simulations suggested the conjecture that for small ε there are also other
stationary distributions because they found that if η(·, 0) = δ1 then the values
Prob{η(x, t) = 0} appeared to be bounded by a constant c < 1. In this case
one could say that the system exhibits a phase transition. This conjecture was
proved in 1968, by M. A. Shnirman in [27] and by Toom in [31].

Toom’s proof is simpler and more useful in the long run, as it exploits
an important observation: that the random space-time history of this model
can be viewed as a percolation. Indeed, consider a graph on the points of the
space-time history Z×Z+, where edges are from each point (x, t) to (x, t+1)
and (x−1, t+1). A space-time point is closed if spontaneous healing happens
there: this occurs with probability ε independently for each (x, t). Otherwise
it is open. Suppose that we start from the initial configuration η(·, 0) in which
every site is sick. Then η(x, t) = 1 if and only if there is an open path from
time 0 to (x, t).

The proof that for small ε there is an upper bound to Prob{η(x, t) = 0} in-
dependent of x, t uses an argument that became called the “Peierls argument”,
or the “contour argument”, and it goes by the following steps.

1. Assuming an unfavorable event at space-time point (x, t) find a finite set
B of space-time points in the past responsible for it.
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2. Find some combinatorial structure Γ(η, x, t) (typically a “contour”) defin-
ing a nonempty subset B′(Γ) ⊆ B.

3. Bound the number of structures Γ with |B′(Γ)| = k by ck for some constant
c.

This proves Prob{η(x, t) = 0} ≤
∑

k(εc)
k, which is small for small ε. In

a later paper [32], Toom proved that an invariant measure different from δ1
cannot be very simple (like a Markov chain).

The monotonicity properties based on the partial order of measures intro-
duced by Mityushin in [23] and the above result imply a “phase transition”:
there is a critical value ε∗ ∈ (0, 1) such that for ε < ε∗ the system is non-ergodic
and for ε > ε∗ it is ergodic. The result raises another natural question: how
many stationary measures are there in the non-ergodic case? Of course, the
convex combination of any two stationary measures is also stationary, so what
we are really asking about is whether there are only two extremal station-
ary measures. Three papers have proved this, under some conditions. Their
methods are different, and each is instructive in its own right. (One of the con-
ditions is the translation-invariance of the stationary measures. Formally, for
a configuration ξ let us define the configuration Tvξ translated by the vector
v as follows: (Tvξ)(x) = ξ(x − v). The translation of a function f : SΛ → R
is defined then by (Tvf)(ξ) = f(Tvξ), and a translation of a measure µ by
(Tvµ)f = µ(Tvf). The measure µ is translation-invariant if Tvµ = µ for all
v.)

In 1970, Vasiliev in [58] uses the technique of correlation equations devel-
oped in statistical physics. It requires ε to be small. In the same year, Vaser-
shtein and Leontovich in [57] prove the result for all ε < ε∗, using an elegant
algebraic representation, for translation-invariant measures. Finally Toom’s
proof in 1998 in [46], requiring both small ε and translation-invariance, com-
bines three-way coupling with a contour argument in percolation. Each of the
three papers generalizes the model in a different way.

3 Positive rates

In the Stavskaya model the invariance of the measure µ0 is guaranteed by the
requirement that in (6) a healthy cell with healthy neighbors never becomes
sick: such a transition is prohibited. For a number of years, the conjecture
was considered that a probabilistic cellular automaton with no prohibited
transitions—that is when all local transition probabilities θ(· | ·) are positive—
is always ergodic. In the corresponding models in continuous time we would
talk of positive rates in place of local transition probabilities. Toom’s best-
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known result is a refutation of this conjecture: he provided a whole family of
non-ergodic probabilistic cellular automata with no prohibited transitions.

Let us call a probabilistic cellular automaton with all-positive local transi-
tion probabilities noisy. It is not unjustifed to view the goal of defining a non-
ergodic cellular automaton that is also noisy as a goal of “error-correction”.
An ergodic automaton would erase eventually all information about the ini-
tial configuration, while a noisy non-ergodic one would preserve some of it,
despite the presence of noise. In fact all members of the family of examples
defined by Toom can be viewed as follows: a deterministic cellular automaton
is given performing some local error-correcting action, but then its action is
“perturbed” by changing each transition with some (small but positive) prob-
ability to something else. A formal way of looking at this is the following.
Recall the definition (5). For some value ε ∈ [0, 1], we say that transition
operator N is an ε-bounded noise operator if for all x ∈ Λ,

(Nδξ)ex,ξ(x) > 1− ε. (7)

In words, it changes the value ξ(x) only with probability < ε. If D is our de-
terministic error-correcting operation then the full transition would be ND:
the action of D is “perturbed” by the noise N . What would be some candi-
date actions D for local error-correction? Let our automaton have just two
local states, S = {0, 1}. We would like to see a noisy automaton with the
property that, for example, for both j ∈ {0, 1}, if η(x, 0) = j for all x then
Prob{η(x, t) ̸= j} < 1/3 for all x, t. In one dimension let the neighbors be
−1, 0, 1, and in two dimensions take the neighborhood (2). A good candidate
error-correcting action seems to be taking the majority of all neighbor states.

In one dimension, this is doomed to failure. A rigorous (complex) proof of
ergodicity is given in 1987 by Gray in [14] (for all monotonic two-state nearest-
neighbor rules in one dimension). For continuous time, Gray gave in 1982 a
simpler but still non-trivial proof in [13]. Here is an informal argument. In a
cellular automaton with 0 ∈ S, in some configuration ξ let us call an island
a finite set S such that ξ(x) = 0 if and only if x ̸∈ S. Let j = 0, so we
are starting from a “see of zeros”. The noise will, occasionally, create a large
(say, size 10) island. The local majority vote rule will not be too helpful in
eliminating the island. Indeed, it cannot do much about the ends. Noise
will make them fluctuate, essentially perform a random walk. The size of the
island, the difference of these random walks, is also a random walk. It will
eventually return to 0, but only in infinite expected time; in the meantime
many other islands arise.

In two dimensions the situation is better, but not ideal. In the absence of
noise the majority rule would not shrink an island, say a square of size n, at
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all. Simulations (and informal arguments) show that in “unbiased” noise it
will be eliminated in about O(n2) steps. Even this is not proved, but here is
a non-ergodic noisy version, see for example [17], and the more elaborate [20].
Let S = {−1, 1}. With U = {(0, 1), (0,−1), (1, 0), (−1, 0)}, let us define the
process P by the following relation: If s is the sum of η(x, t) over the four
neighbors {x+ v : v ∈ U } of x then

Prob{η(x, t+ 1) = −1} = εsProb{η(x, t+ 1) = 1}.

So for example if there are 3 neighbors with +1 and 1 neighbor with −1 then
the next state is ε−2 times more likely to become +1 than −1. For j = 0, 1
let for x = (x1, x2):

Λj = {(x, t) ∈ Λ× Z+ : x1 + x2 + t ≡ j (mod 2)}.

We turn Λj into a graph, connecting (x, t) and (y, t+1) by an edge whenever x
and y differ by 1 in just one coordinate. Then the process {η(x, t) : (x, t) ∈ Λ0}
is a Gibbs state of the Ising model of equilibrium statistical mechanics (of
course the same holds for Λ1). It is known that for small ε (corresponding
to “low temperature”) the Ising model has more than one Gibbs state, which
makes for several invariant distributions for the process P . This is a very
delicate process, though. If the transition probabilities are changed ever so
slightly to prefer the 1’s over the −1’s, the process becomes ergodic. In the
continuous-time models called interacting particle systems, the corresponding
model is called the stochastic Ising model, see [21].

Simulation of the perturbed majority rule shows a similar behavior. If the
noise prefers the 1’s over the 0’s, then a large island will grow ! The 1/n speed
of shrinking provided (on average) by the majority rule is overpowered by the
constant speed of growth. “Unbiased” is understood here with respect to the
states 0 and 1. More precisely, let us define the flipping operation F for a
function f over {0, 1}Λ as follows:

(Ff)(ξ) = f(1− ξ). (8)

We say that the noise operatorN is unbiased with respect to flips ifNF = FN .
Let us now turn to Toom’s best-known example, in two dimensions, called

the Toom rule:

(DToomξ)(0, 0) = maj(ξ(0, 0), ξ(0, 1), ξ(1, 0)).

The transition rule is a majority vote over three neighbors: north, east, self—
which is then perturbed with some small probability ε. The novelty is just
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Figure 1: An island shrinking under Toom’s rule (simulation). The faults have
probability 0.04 and are completely biased towards the 1’s.

that the neighborhood over which the majority is taken is not (central-) sym-
metric—but this makes a big difference. Imagine an island. Enclose it into a
triangle with vertices (a, b), (a + c, b), (a, b + c). If c ≥ 1 then without noise,
one application of the Toom rule will squeeze the island into the triangle
(a, b), (a + c − 1, b), (a, b + c − 1). Thus, the island will shrink with constant
speed. Small noise (even if it is biased!) can slow down this shrinking, but still
leaves its speed constant (see Figure 1). This last argument is not a proof; we
will say more about the (not easy) proof in the next section.

How small must be the probability ε for non-ergodicity? The existing
proofs don’t give an explicit bound, though for example (a rather bad) one
can easily be computed from the version of the proof in [7]. Simulations
suggest that the upper bound 0.06 is sufficient.

4 Reliable computation

We pointed above to a connection of non-ergodicity with error-correction. In
its original form, non-ergodicity is only asking to safeguard at least one bit
of information—a minimal form of information conservation in the presence
of local faults. But the solutions found have much wider application. Von
Neumann in [59] addressed the question of reliable computation with unre-
liable components. His computation model is now called a Boolean circuit
(for example with logic gates AND and NOT), computing a Boolean function
with, say, a one-bit output. For a sufficiently small ε, for any Boolean circuit
C of size N he constructed another one, C ′, of size O(N logN) that computes
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the same output as C with probability 1 − O(ε) even though each gate of
C ′ is allowed to malfunction with probability < ε (independently from the
others). The construction multiplies each wire and each gate some O(logN)
times: in the absence of faults, each wire in a bundle carries the same bit.
The key addition is to insert into each such wire bundle a little circuit called
the restoring organ. The role of this organ is that if, say, the fraction of its
input wires carrying faulty information is < 5ε then after its application it
will be reduced to < 2ε: so it is about protecting one bit of information! Von
Neumann used random permutations for the restoring organ; for constructive
(but still not local) solutions, see the survey [25].

As a model of computations, Turing machines are in several ways bet-
ter than Boolean circuits. They were introduced in the 1930’s to formalize
the theory of computability, and it has long been accepted that every func-
tion (with, say, strings in some alphabet as input and output) computable in
an intuitive sense can also be computed on an appropriate Turing machine.
There is a universal Turing machine, one that can simulate every other Turing
machine.

Every Turing machine (in particular also the universal ones) can be sim-
ulated by an appropriate one-dimensional cellular automaton, so cellular au-
tomata can also serve well as a model of arbitrary computation. When asking
for a reliable computer, it makes sense therefore to ask for a (noisy) probabilis-
tic cellular automaton capable of performing arbitrary computations (defined
by its input). Our 1988 construction with John Reif in [10], built on Toom’s
rule, does this. It takes an arbitrary (deterministic) one-dimensional cellular
automaton A (say, a universal one), say with neighborhood {−1, 0, 1}, and
builds a three-dimensional noisy cellular automaton A′ simulating A. Let
ζ(x, t) be a trajectory of A. The intended history η(x, y, z, t) of A′ would be
η(x, y, z, t) = ζ(x, t): so ideally in A′ each cell of the whole plane {x}×Z2 has
the same state as the symbol at position x of A. If DA is the transition rule
of A then the rule of A′ says: in order to obtain your state at time t+ 1, first
apply the Toom rule in each plane defined by fixing the first coordinate—call
this DToom,2,3. Then, apply rule of A on each line obtained by fixing the sec-
ond and third coordinates—call this DA,1. Finally, apply an ε-bounded noise
operator N , so the complete transition of A′ is NDA,1DToom,2,3.

The reliability of the automaton A′ is proved in essentially the same way
as the non-ergodicity of the (perturbed) Toom rule; see below for remarks on
the proof.

It seems unrealistic for the automaton A′ to store each symbol of informa-
tion ζ(x, t) with infinite redundancy, as the array of all values η(x, y, t). But
if it is known that the computation of automaton A uses only S cells and runs
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for only T steps then it can be run on the space Λ = ZS , and can be simulated
reliably (failing only with probability O(ε)) on the space Λ′ = ZN ×Z2

R where
R = O(log(ST )): so repeating each symbol only O(log2(ST )) times. See the
paper [1] by Berman and Simon, which improves on [10].

5 Eroders

Toom called a deterministic cellular automaton an eroder if it eliminates any
island. From now on we will tacitly require S = {0, 1} and that the rule the
rule be monotonic. The Toom rule DToom leads to non-ergodicity because
both it and its dual are eroders, where the dual FDToomF is defined using (8)
(it happens that DToom is self-dual).

What rules are eroders? Mityushin and Toom in [29] proved that it is
undecidable about an arbitrary one-dimensional monotonic binary cellular
automaton whether it will erase the island . . . 001100 . . .. Mityushin and Toom
also define there a one-dimensional monotonic binary cellular automaton A
for which given an island it is undecidable whether A will erase it.

These statements make us appreciate Toom’s elegant formula of [34] given
below—in any dimension d—that decides about an arbitrary monotonic binary
cellular automaton A whether it is an eroder. Let ΛA = Zd, with neighborhood
UA ⊂ Λ, and transition rule gA : SUA → S. Recall that S = {0, 1}. We call
a subset S ⊆ UA a null set of A if whenever in a configuration ξ we have
ξ(x) = 0 for all x ∈ S, this implies (gAξ)(0) = 0. For example, in the Toom
rule, the minimal null subsets are {(0, 0), (0, 1)}, {(0, 0), (1, 0)}, {(1, 0), (1, 1)}.
Theorem 1 For a given cellular automaton A let

σ(A) =
⋂

null sets S

conv(S)

where conv(S) is the convex hull taken in the Euclidean space Rd. Then A is
an eroder if and only if σ(A) is empty.

It is important here that the the operation above happens in Rd. Consider
for example the automaton A in two dimensions with the transition

(DAξ)(0, 0) = (ξ(0, 0) ∨ ξ(1, 1)) ∧ (ξ(0, 1) ∨ ξ(1, 0)).

The minimal nullsets are {(0, 0), (1, 1)} and {(0, 1), (1, 0)}, so σ(A) =
{(1/2, 1/2)}, which is not in Z2. By Toom’s theorem, this is not an eroder.

How about one dimension? There are monotonic binary eroders in one
dimension as well; however, none whose dual would also be an eroder.
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By the theorem of Toom given below, an eroder remains an eroder also
in noise. It turns out that for this theorem we don’t even need space-time
uniformity or a strict Markov property of the noise, so we can relax the re-
quirement (7) further, using a formulation borrowed from [38]. Let A be an
arbitrary deterministic cellular automaton, and η(x, t) a random history of A.
Let the random fault set E ⊆ Λ×Z+ be the subset of the space-time in which
η violates the transition rule gA. We will say that the distribution of η is an
ε-perturbation of A if for every finite subset S of space-time,

Prob{S ⊆ E} ≤ ε|S|. (9)

A trajectory ζ(x, t) of automaton A is called stable if there is a function δ(ε)
with δ(ε) → 0 as ε → 0 such that for all ε-perturbations η of A starting
from the same initial configuration: η(·, 0) = ζ(·, 0), and for all x, t we have
Prob{η(x, t) ̸= ζ(x, t)} < δ(ε). Call an eroder stable if the history ζ with
ζ(x, t) = 0 for all x, t is a stable trajectory for it.

Theorem 2 Every binary eroder is stable.

As mentioned above, this theorem implies that the perturbed Toom rule
is non-ergodic.

In continuous time, a simple characterization of eroders similar to The-
orem 1 is not available. But Gray gave a sufficient condition, and proved
in [15] that transition rates corresponding to the Toom rule in continuous
time are non-ergodic. This result is also robust with respect to the kind of
faults allowed: they can be biased.

6 On the proofs

Toom proved Theorem 2 using a kind of “contour argument” as outlined
in Section 2. The paper [38] contains detailed proofs of both theorems 1
and 2, in a somewhat more general setting. The part of the contour argument
defining an appropriate structure Γ(η, x, t) is quite sophisticated. A somewhat
simplified version of this proof of just the stability of Toom’s rule, following [1],
can be found in [7].

Toom’s first examples of noisy non-ergodic cellular automata in [33] used
some special two-dimensional eroders other than the north-east-center voting;
their dual is also an eroder. The contour argument in the proof of their
stability is simpler, the structure Γ in question is indeed only a kind of one-
dimensional contour. Here is one of these eroders, call it A, with transition
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operator

(DAξ)(0, 0) = (ξ(0, 0) ∨ ξ(1, 0)) ∧ (ξ(1, 0) ∨ ξ(1, 1)).

Given any island, this rule squeezes it in every step into a narrower and nar-
rower horizontal stripe, eventually erasing it. Its dual will squeeze an island
in every step into a narrower and narrower vertical stripe.

Our paper [10] contains a completely different kind of proof, based on a
hierarchical structure discoverable in the set of independent faults. It is in
some ways more intuitive as it is based directly on the picture of shrinking
triangles (see Figure 1), but leads to somewhat worse estimates. The paper [2]
by Bramson and Gray develops this method more systematically, introducing
a hierarchy of random processes built up from each other by a “decoding”
operation. Its method is also used in the proof of the continuous-time “Toom
theorem” in [15].

7 One dimension

With Kurdyumov and Levin we defined a simple one-dimensional (not mono-
tonic) two-state eroder (call it K) in [9] (it is sometimes referred to as the
GKL rule). Its dual is also an eroder; more precisely, recall the flip operation
F in (8), and define the reflection operation R defined as (Rξ)(x) = ξ(−x)
which commutes with flip. Then KFR = RFK. Alas, this rule (along with
other simple ones similar to it) is not stable, at least not in strongly biased
noise, as shown in Kihong Park’s thesis [24].

As said above, there are no eroders in one dimension whose dual is also
an eroder. More generally, as also said, monotonic two-state one-dimensional
probabilistic cellular automata are ergodic: as proved by Lawrence Gray for
continuous time in [13], and for discrete time in [14]. Based on this and also
on the fact that in one-dimensional lattice equilibrium systems (like the Ising
model) there is no phase transition, and that therefore the corresponding
reversible Markov processes are ergodic, the probabilistic cellular automata
community formulated a hypothesis called the “positive rate conjecture”, say-
ing that all noisy one-dimensional cellular automata are ergodic.

Georgii Kurdyumov outlined in [18] a one-dimensional cellular automaton
that should be non-ergodic. Its cells were meant to implement a hierarchical
structure dealing with larger and larger groups of faults. However, details
of the proposal did not follow. I worked these out in [6], defining a cellular
automaton that simulates a similar one; this gives rise to an infinite hierarchy
of more and more reliable cellular automata all of which but the first one “live”
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in simulation. A much more structured—and longer—paper [8] extended the
result also to continuous time. Its method uses the idea of Bramson and
Gray in [2] of a hierarchy of random processes derived from each other by a
“decoding” operation.

These systems refute the positive rate conjecture. As they are not mono-
tonic and the corresponding Markov processes are not reversible either, they
don’t contradict the motivating examples of the conjecture.

The one-dimensional constructions and proofs are very complex; the cells
have a very large number of states. (One can say that as in one dimension
the geometry does not help, all error-correction must rely on “organization”.)
The challenge to find simpler examples is still standing.

8 Multi-level eroders

After the beautiful characterization of two-state monotonic eroders in The-
orem 1, Toom asked the question whether a similar characterization exists
also when the set of states is a finite ordered set, say {0, 1, . . . , n}. The sit-
uation turns out to be more complicated. Galperin characterized in [12] the
one-dimensional eroders in terms of the running speeds of the ends of islands
of various levels. But Toom showed in [35] that some of these eroders, even
with just three levels, are not stable, so the analogue of Theorem 2 does not
hold. With Ilkka Törmä in [11] we characterized all stable one-dimensional
multilevel eroders.

The question of characterizing multi-level eroders is still open in dimen-
sions greater than one. In one dimension even an unstable eroder erases islands
in linear time. In two dimensions, this is not always true. Toom’s paper [3]
with his student Lima gives an example of a two-dimensional three-level eroder
that erodes some islands only in quadratic time. In one-sided noise, it becomes
ergodic. This example can easily be modified to an eroder that erases some
islands only in exponential time. At this point it is not known whether the
question of which three-level monotonic two-dimensional cellular automata
are eroders is decidable at all. On the other hand, our method used in [11]
seems generalizable to several dimensions, using Toom’s substantial sharpen-
ing in [39] of his main stability result. Therefore it is likely decidable about a
monotonic multi-level cellular automaton whether it is a stable eroder, while
it might remain undecidable whether it is just an eroder.
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9 Other work on cellular automata

Toom was one of the leading figures in Russian research on biologically and
physically inspired systems with local interaction throughout the 1970’s and
80’s. He was one of the organizers of a regular conference in the biologi-
cal research center in Pushchino, and one of the editors, mostly along with
R. L. Dobrushin and V. I. Kryukov, of the proceedings. Unfortunately, most
of these are in Russian, though some resulted also in an English-language
publication: see Selecta Mathematica Sovietica and [4]. The book [55] is an
important and hard-to-access survey of research on various aspects of proba-
bilistic cellular automata.

The account in the present section of Toom’s later work is incomplete, re-
flecting my own interests. The technique developed for proving the main stable
eroder theorem appears in several later publications. The work [36], general-
izes the cellular automata model in an unexpected direction: space-time is a
multi-dimensional Euclidean space. However, the set of states is just {0, 1},
so a history is just a subset of space-time. Via the definition of a “monotonic
evolution”, the space-time set grows still in discrete steps—allowing a gener-
alization of the original eroder question. Though the results are somewhat
similar, there is a richer set of possibilities: some eroders will erode only in
non-linear time. Systems that erode in linear time are characterized in a way
similar to Theorem 1: via a set σ; in the present case of a space-time system,
instead of being empty, σ has to consist of just the origin 0. Now there will
be some eroders even with σ ̸= {0}, just not working in linear time. Noise is
introduced and it is shown again that a linear-time eroder is also stable, and if
it is not eroding then it is not. But only Toom’s much later paper [50] proves
that the system is not a stable eroder when σ ̸= {0}.

The papers [41, 42] strengthen the stable eroder results to cases where the
set S of local states is not finite, but is the set of integers. Of course, new
conditions are needed on the transition probabilities.

The paper [37] places some cellular automata results into the broader con-
text of tiling systems, thus touching the area of symbolic dynamics. Generally
tiling questions don’t involve probability, but here a version of probabilistic
perturbation with a condition similar to (9) is introduced, so that questions of
stability can be examined, allowing an application of the stable eroder tech-
nique (among others). Similar conditions on random perturbations have much
later been used by Durand, Romashchenko and Shen in [5], although for non-
periodic tile sets, and a very different technique of “error-correction”. The
perturbation condition raises a new challenge still mostly unsolved: to find
Gibbs distributions satisfying it. The paper gives a construction only in one
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dimension, but even this with a quite technical proof.
The problem of information conservation in one dimension continued to

occupy Andrei Toom throughout his career; he was not satisfied with the
overly complex constructions in [6, 8]. In two papers, he explored alternative
models: in these, the cells have a continuous set of states (real numbers or
real numbers modulo some M > 0). The local transition rule is a (linear)
averaging operation over the neighborhood—with the intent of preserving a
kind of continuity—plus some noise. (There is reference to a related idea
of Hammersley’s “harnesses” in [16].) The paper [45] gives a very detailed
analysis of how the loss of continuity depends on the tail behavior of the
noise variables. One idea for a finite system, also favored by physicists, is to
store the information in some kind of non-local, topological characteristic, like
rotation number. In [44], Toom explores this idea via a cellular automaton
with a finite number L of cells, periodic boundary conditions, whose local
state space is the set of real numbers modulo M . Given the finiteness of
L, all information, including the rotation number, will eventually be lost;
the main result of the paper lower-bounds the expected time for the loss of
the rotation number by approximately L−1 exp(cM3) (with a similar upper
bound in some cases, without the L). So the information is preserved for a
time growing “super-exponentially” as a function of the size M of the local
state space. The dependence on the size L of the space is, alas, less nice. In
the finite versions of Toom’s two-dimensional non-ergodic models as well as
of the complex one-dimensional models [6, 8], the lower bound on relaxation
time grows exponentially with the system size L (number of cells) while here
it decreases as L−1.

The papers [41, 42] cited above can also be seen as surface growth models
where despite the fact that noise drives the surface to grow exclusively in the
upward direction, with probability 1 the surface height remains bounded. The
physics literature calls this pinning. In [47], Toom returned to this problem
in a one-dimensional model in which cells can have real number states. The
local rule drives the state in each step towards the local minimum of the
three neighbors, with a speed 1 − α, but again there is a small rate β of
random growth added. The result is that this system has a property he calls
pseudo-pinning : there is growth, but its velocity is bounded C1α

C2/β, so it
decreases exponentially in 1/β. (There is a somewhat similar lower bound.)
The proofs use multiple times a technique involving a majorizing operation
≺ in the following way: AB ≺ B′A′ where operators A,B are replaced with
operators A′, B′ having slightly different parameters.
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10 Disappearing cells

It is a natural question to try to generalize the cellular automata model by
allowing the birth and death of cells—in the sense that for example in one
dimension when a cell dies its site disappears, and its nearest neighbors con-
nect with each other. For a finite set of sites there are natural ways to do this
in general form even for random evolutions, see Malyshev’s [22]. However, it
does not seem possible to talk about, for example, an infinite two-dimensional
cellular automaton in which cells (sites) can be eliminated or added: we would
have to jump to the case of general infinite graphs.

The one-dimensional case, the subject of Toom’s pioneering [51], is an
exception. The model is attractive as it promises a new kind of simple one-
dimensional noisy “non-ergodicity”. Recall that with a binary set of states
S = {0, 1}, we may want to remember, in low-level noise, whether we started
from all 0’s or all 1’s. When in a sea of 0’s a large island of 1’s appears, we
did not find any simple local rule capable of erasing it (in noise). But when
cells can be removed there is such a rule: for example just remove every pair
of cells containing 01! Repeated application of this rule would eat up the
island—hopefully even in noise.

Right at the start, however, Toom is faced with a new kind of problem:
how to define the probability space in question. If a cell is deleted then the
position of cells over a whole half-line changes. The model he offers does
not define a probability measure over histories, only considers measures over
the space of configurations. Even here it is restricted to translation-invariant
measures, so the history is just a sequence of such measures µ0, µ1, . . .. The
main definition is that of a transition operator P with µt+1 = Pµt. It is
more complex than in the ordinary case, and the operator obtained is not
linear. The techniques relying on linearity are not available, so even a new
proof of the existence of an invariant measure is needed. A generalization
allowing arbitrary local (one-dimensional) substitutions appeared in the joint
paper [26] with Toom’s students Rocha and Simas.

In [51], Toom proves non-ergodicity of his variable-length medium only
for one-sided noise. It is plausible that it would also hold for arbitrary small
(independent) noise; Toom promised but did not live to deliver this result.
The proof in the paper is a very detailed contour argument, in its general
shape not unlike the one Toom introduced for the Stavskaya model in [31].
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11 The life

(I posted an English translation of Toom’s autobiographical notes in [52].)
Toom’s activities extended far beyond research in mathematics. In the latter
he focused indeed mainly on probabilistic cellular automata, but to computer
scientists his name is probably best known for the work he did as an under-
graduate. Following the surprising discovery of Karatsuba that two n-digit
numbers can be multiplied in O(nlog2 3) bit-operations (instead of the O(n2)
steps of the thousand-years old school algorithm), he published in [30] an al-
gorithm doing this in O(n1+ε) steps. Stephen Cook found a similar algorithm
independently at about the same time.

In the deep tradition of Russian mathematicians, among them many out-
standing ones, he was very active in mathematical education—considering an
honor to be able to contribute to the system he himself benefited from. We can
get an impression of the extent of his activity from the corresponding parts of
his homepage http://www.toomandre.com (which hopefully will remain alive
for a while): /my-articles/ruseduc, /my-articles/engeduc. He wrote a
number of articles in the magazine Kvant (addressed to interested and able
high-school students), posing problems and giving little expositions. He was
also a main organizer of and contributor to the so-called “School by correspon-
dence”. This institution addressed the need of motivated students who wanted
to go beyond what their schools could offer but, living far from metropolitan
areas (before the era of internet) had no access to other opportunities. They
received challenging mathematical problems, had some time (say, a month)
to work on them and send in the solutions. Professional mathematicians like
Toom sent back the commented solutions, even giving the students a second
chance to solve the problem correctly. In Moscow, Toom ran a popular com-
puter club, which also turned out to be a greatly successful way of leading a
number of youngsters towards professional mathematics and computer science.

In 1989, Toom moved to the United States; among all the new social and
existential challenges he had to face, his interest and activism in education
never diminished. Ideally, given the depth of his experience and commitment,
he should have thrived here, but over eight years of trying, he did not se-
cure a tenured position in the United States. Paradoxically, his passionate
educational interest worked against him, because of one handicap: a com-
plete lack of the diplomatic gene. He was successful in the classroom, but his
rather bluntly expressed opinions, starting with [40], made him unattractive
to search committees. In Russia, he did criticize some buerocratic aspects
of the educational system, but in America he mostly posed the Russian way
of mathematics teaching as a superior example and attacked the core insti-
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tutional principles, as expressed for example in some standards documents,
of the American system (and the Brazilian one trying to follow it). One of
his favorite topics was “word problems”; he argued their usefulness in great,
inspiring and convincing detail (and also practiced in the classroom what he
preached). Thanks to the respect he commanded in the strong probability-
theory community of Brazil he ended up there (learning Portuguese at an
advanced age). Settling at the University of Pernambuco in Recife he felt
finally able to teach what he wanted and the way he wanted.

Andrei never considered himself merely a mathematician, and has always
tried to apply his rigorous thinking to other areas. In the early 1970’s he was
drawn into the circle of the psychologist Vladimir Lefebvre (later a professor at
UC Irvine), who introduced a formal, algebraic system of social interactions.
Toom wrote some papers on the subject, for example applying those concepts
to game theory. But more importantly, he took up the idea of “reflexion”
as a useful tool of analyzing human behavior and interpreting literature. An
interesting example is his study of the famous—and rather enigmatic—novel
“A hero of our time” by the 19th century poet and writer Mikhail Lermontov.
His last work, cut short by his death on his retirement to New York, was
working, together with his wife Anna, on the rich legacy of his grandfather, a
noted Russian poet Antokolsky; they published their new discoveries in [54].
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152. Birkhäuser, Boston, 1991. 6, 7

[3] Moises Lima de Mendezes and Andrei L. Toom. A non-linear eroder in
presence of one-sided noise. Brazilian Journal of Probability and Statis-
tics, 20:1–12, 2006. 8

[4] R. L. Dobrushin, V. I. Kryukov, and A. L. Toom, editors. Locally In-
teracting Systems and their Application in Biology. Lecture Notes in
Mathematics 653. Springer, 1976. Proceedings of a School-Seminar held
in Puschchino,. 9

20



[5] Bruno Durand, Andrei E. Romashchenko, and Alexander Kh. Shen.
Fixed-point tile sets and their applications. Journal of Computer and
System Sciences, 78:731–764, 2012. 9
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[8] Peter Gács. Reliable cellular automata with self-organization. Jour-
nal of Statistical Physics, 103(1/2):45–267, April 2001. See also
arXiv:math/0003117 [math.PR] and the proceedings of STOC ’97. 7,
9
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